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Periodic deformations spontaneously arising in hybrid aligned nematics are studied
numerically. The so-called splay stripes are considered for material parameters close to
those known for 5CB and for the saddle–splay elastic constant k24 values allowed by the
Ericksen inequalities. The role of finite azimuthal anchoring on the planar boundary surface
is investigated. The director distribution is determined for various azimuthal anchoring
parameters. It is found that azimuthal anchoring suppresses the periodic deformations,
damping their amplitude and decreasing all the parameter ranges for which the stripes exist.
For the material constants considered, this effect is more pronounced for stripes which are
realized for a negative k24 elastic constant, than for stripes arising if k24w0.

1. Introduction

The so-called hybrid aligned structure (HAN)

typically occurs in a nematic layer when the boundary

anchoring conditions induce planar alignment on

one surface and homeotropic alignment on the other.

The director distribution is distorted with comparable

contributions of splay and bend. However, if the layer

is thinner than the critical value dH, the director field

becomes uniform [1]. The uniform distribution can be

planar (when the planar polar anchoring prevails) or

homeotropic (when the homeotropic polar anchoring

dominates).

In 1990, another possibility was found experimentally

by Lavrentovich and Pergamenshchik in thin layers

with a hybrid orientation [2]. A nematic liquid crystal

was deposited on the surface of glycerin with the upper

surface free. The director alignment was planar at the

liquid crystal–glycerin interface and nearly homeotropic

at the free surface. The stripes, visible under a pola-

rizing microscope, revealed a periodically deformed

structure. Similar periodic patterns were observed in

layers with pure planar [3] and pure homeotropic [4]

surface conditions and in twisted structures [5] under

the influence of external fields. In the hybrid case,

however, stripes can arise spontaneously, even without

action of a field.

This effect was theoretically studied in depth by

Lavrentovich and Pergamenshchik [6–8] and others

[9–15]. Two types of periodic structure were predicted:

splay stripes, when planar anchoring is stronger than

homeotropic anchoring, and bend stripes in the

opposite case. This paper, as well as most of the earl-

ier papers, is devoted to splay stripes observed by

Lavrentovich and Pergamenshchik. For suitable elastic

properties of the nematic and proper anchoring

conditions, splay stripes appear if the thickness of the

layer is larger than dP and lower than dA, where dPvdH

and dAwdH [2, 9, 14, 15]. A significant influence of the

k24 elastic constant on the appearance and structure

of the splay stripes was found [7, 11]. Our earlier

calculations showed that two different periodic struc-

tures (mode 1 and mode 2) appeared depending on the

ks~k24/k11 value [15]. Most of the earlier studies were

based on linear analysis, and so concerned small

deformations in the vicinity of dP [2, 6–13]. The

values of dp and their dependence on material and

layer parameters were found. The values of dA were

calculated only in a few studies [14–16].
Anchoring conditions play a very important role in

the occurrence of splay stripes. Periodic deformations

arise when the polar anchoring energy on the planar

plate is finite and larger than on the opposite plate.

Lavrentovich and Pergamenshchik [2] assumed the

azimuthal degeneration of anchoring due to the

isotropic character of the ambient medium. The same

assumption was made in our earlier work [15, 16].

Studies in which non-zero azimuthal anchoring was*Author for correspondence; e-mail: dkryzan@mail.p.lodz.pl
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taken into account, restricted the considerations to the

vicinity of dP [9–12].

This paper is devoted to numerical investigations of

the influence of non-zero azimuthal anchoring condi-

tions on the structure and occurrence of spontaneous

splay stripes in hybrid aligned nematic layers. We

calculate the director distributions for various anchor-

ing conditions. We find the influence of azimuthal

anchoring at the planar boundary surface on the ranges

of parameters essential for the existence of the stripes,

i.e. on the thickness of the layer, elastic properties of

the nematic, and polar anchoring conditions.

In the following section, details of the system under

consideration are given and the method of computation

is briefly described. The results are presented in § 3,

while § 4 is devoted to a short discussion.

2. Method

Our numerical calculations, performed within the

framework of continuum theory, consider an infinite

nematic layer of thickness d placed between two plates

parallel to the xy-plane and positioned at z~¡d/2.

Planar alignment was assumed at z~2d/2 and home-

otropic alignment at z~d/2. The two angles required to

describe the director distribution were h measured

between n and the xy-plane and Q measured between

the x-axis and the projection of n on the xy-plane. The

stripes were directed along the x-axis. The angles h and

Q were dependent on y and z. The y-dependence was

periodic. The periodicity can be described by the wave

vector q||y or by the spatial period l~2p/q where q~|q|.

The method was based on numerical minimization of

the free energy F of a single stripe per unit area of the

layer expressed by:

F~
k11

2d

ð1

0

ð1=2

{1=2

+nð Þ2zkt n: +|nð Þ½ �2z
n

8><
>: kb n| +|nð Þ½ �2

z2 ktzksð Þ+: n +:nð Þzn|+|n½ �g dfzfpzfH

�
dg

ð1Þ

where

fP~{chP cos2 h g,{1=2ð Þ{cQP cos2 Q g,{1=2ð Þ ð2Þ
and

fH~{chH sin2 h g,1=2ð Þ ð3Þ
are the surface densities of free energy (indices P and H

denote planar and homeotropic plates, respectively);

chP~WhPd/k11, chH~WhHd/k11 and cQP~WQPd/k11 are

the polar and azimuthal anchoring parameters, res-

pectively and WhP, WhH and WQP are the anchoring

strength parameters, kb~k33/k11, kt~k22/k11 and

ks~k24/k11 are the reduced elastic constants, g~y/l
and f~z/d denote the reduced co-ordinates and

+~ d
l

L
Lg , L

Lf

� �
. In this way the free energy density per

unit area of the layer F can be expressed in units equal

to k11/d. Periodic boundary conditions along the y-axis

were imposed. The functions h(g, f) and Q(g, f) were

approximated by discrete values of the angles. The

energy (1) was then minimized in the manner described

in detail in our earlier work [15, 17].

The elastic constant ratios used for computations

were chosen to be close to those of 5CB which was used

by Lavrentovich and Pergamenshchik in their experi-

ment: kb~1.3, kt~0.5 [18, 19]. The values of ks were

varied throughout the entire allowed range (20.5, 0.5)

resulting from Ericksen inequalities [20]:

ks¡2{kt

{kt¡ks¡kt

: ð4Þ

The other surface-like elastic constant, k13, was

assumed to be zero, according to the theoretical

result obtained by Yokoyama [21].

The calculations were performed for various values

of chP, chH and cQP. The relation chP~2chH was adopted

in all calculations. For mode 1, azimuthal anchoring

energy on the planar plate was assumed to be one order

of magnitude smaller than polar energy, which is the

typical relationship [22, 23]. For mode 2, values larger

by one order of magnitude were chosen. Azimuthal

anchoring energy on the homeotropic plate was always

equal to zero.

3. Results

Two modes with different periodic structures were

recognized in hybrid aligned nematic layers, depending

on the ks value. When ks is lower than a critical value

ksC1, mode 1 appears, whereas mode 2 is realized

when ks is higher than some other critical value ksC2.

For conical degeneration and for kt~0.5 used in

our calculations, both critical values were zero:

ksC1~ksC2~0. This means that mode 1 is predicted

for negative ks, and mode 2 for positive ks.

Periodic deformations are strongly suppressed by

azimuthal anchoring. Non-zero azimuthal anchoring

influences both modes, but mode 1 is evidently affected

more. For the sake of clarity, the influence on each

mode will be presented separately.

3.1. Mode 1

The director distribution is strongly dependent on

azimuthal anchoring. This effect can be illustrated by

the decrease in the amplitudes of the h(g, 0) and Q(g, 0)

functions with azimuthal anchoring on the planar plate

cQP. The corresponding dependences are shown in

figure 1, where the amplitudes hm and Qm are plotted as

functions of cQP for chP~1. Obviously, the influence of

finite azimuthal energy on the angle Q is more
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pronounced. Sufficiently large azimuthal anchoring can

totally suppress the stripes.

The width of the stripe is also influenced by

azimuthal anchoring. In the following, this effect is

presented by means of the reduced wave number

Q~qd. In the case of azimuthal degeneration, the

stripes appear when chP is greater than the lower critical

value cC1. In the limit chPpcC1, the wave number of the

periodic distortion and its amplitude tend to zero. For

some range of chP, the wave number of the periodic

distortion increases with chP and for higher chP it

decreases again (figure 2). The amplitude of distortion

increases with chP. When chP exceeds another critical

value ch2, periodic deformations become energetically

unfavourable and are replaced by homogeneous hybrid

alignment, shown in figure 2 by means of the dashed

part of curve 1.

When azimuthal anchoring is non-zero, the depen-

dence of the wave number on chP is different. Stripes

appear with finite wave number at cC1. When chP is

increased, the wave number decreases. Simultaneously,

the amplitude of the deformation becomes larger. For

chP approaching some other critical value cC2, the wave

number decreases rapidly to zero (figure 2, curves 2–4).

Such a form of the dependence of Q on a control

parameter is characteristic also for other pattern-

forming systems [15–17, 24]. The decay is particularly

sharp when cQP increases with chP according to

assumption cQP~0.1chP (curve 4).

The role of the azimuthal anchoring parameter cQP is

also shown in figures 3 and 4. In both figures chP~1. In

figure 3, the dependence of the wave number on cQP is

plotted. Again, two ranges of the azimuthal anchoring

parameter can be distinguished: one in which the wave

number increases with cQP, and another in which Q

decreases with cQP. The narrowest stripes occur when

Figure 1. Amplitudes hm (solid line) and Qm (dotted line)
plotted as functions of cQP for ks~20.3 and ks~20.2.
Mode 1: chP~1; chH~0.5.

Figure 2. Dimensionless wave number Q~qd of mode 1 as a
function of chP. Curve 1: cQP~0 (the dashed part of this
curve corresponds to the energy of a periodically
deformed layer larger than the energy of the homo-
geneous structure); curve 2: cQP~0.01; curve 3: cQP~0.1;
curve 4: cQP~0.1chP; chH~chP/2 and ks~20.3 in all
cases.

Figure 3. The dependences of dimensionless wave number Q
of mode 1 on cQP for ks~20.3 and ks~20.2; chP~1 and
chH~0.5.

Figure 4. Dimensionless wave number Q of mode 1 as a
function of ks for different azimuthal anchoring cQP

energies indicated by curves: in all cases chP~1 and
chH~0.5.
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the azimuthal anchoring energy is about one order of

magnitude smaller than the polar anchoring energy on

the planar plate. When cQP approaches some critical

value, the wave number tends rapidly to zero.

Simultaneously the amplitude of the deformation

decays as shown in figure 1. Higher cQP excludes the

appearance of the stripes. In figure 4, the Q(ks)

dependences for different anchoring conditions are

given. The wave number decreases monotonically with

ks and goes to zero at ksC1. A significant decrease of

ksC1 with azimuthal anchoring is evident.

When chP tends to cC2, a stripe become wider and

regions with nearly homogeneous hybrid alignment of

opposite senses arise in both halves of a stripe. These

regions widen rapidly to infinity at cC2, which means

that for chPwcC2 the layer adopts the homogeneous

hybrid structure. These effects are illustrated in figure 5

which shows the h(y) profiles for several values of chP in

a layer with non-zero azimuthal anchoring.

The range of ks, as well as the range (cC1, cC2) for

which the stripes exist, narrow with cQ. This effect is

illustrated in figure 6 where the regions of existence of

stripes in the plane (ks, chP) are shown. It is evident that

the upper boundaries of these regions are more strongly

influenced by cQP than the lower. The range of chP in

which stripes appear decreases with ks in each case.

When ks tends to the critical value ksC1 from below, the

amplitude of deformation is damped (and simulta-

neously the wave number decreases to zero, see

figure 4). Sufficiently large azimuthal anchoring

excludes the occurrence of stripes of mode 1, i.e. the

critical quantities tend to their limiting values:

ksC1p20.5, cC1pcC2p1 (for kt~0.5 and chP/chH~2).

3.2. Mode 2

The influence of azimuthal anchoring on mode 2 of

the splay stripes is much weaker than in the case of

mode 1. The amplitudes hm and Qm are only slightly

lowered relative to their values obtained for the conical

degeneration case. The most pronounced effect is

the decrease of the angle Q on the planar plane.

Simultaneously, only a marginal change of Q on the

homeotropic plane was found. Even unusually large

planar azimuthal anchoring causes only small changes

of the angle h.

In the layer without azimuthal anchoring, stripes

appear with finite wave number for arbitrarily low chP

(however, for small ks, there exist two critical values

cC1’ and cC1@, between which the planar orientation

occurs). For small chP, the wave number of distortion

increases slightly with chP. For chP approaching cC2, the

wave number decreases rapidly to zero, which means

that the stripe period tends to infinity. The same effects

were found in the case of non-zero azimuthal anchoring

conditions, but the values of cC2 were smaller. The

dependences of the wave numbers on chP for various

azimuthal anchoring conditions are shown in figure 7.
The rapid increase of the stripe period to infinity is

accompanied by the arising of nearly homogeneous

regions in each half of a stripe, as in the case of mode 1.

For chPwcC2, the homogeneous hybrid alignment is

realized. The amplitude of the distortion increases with

chP.

In the case of finite azimuthal anchoring conditions

as well as in the case of azimuthal degeneration, the

amplitude of the distortion and wave number decay to

Figure 5. Dependences of h(y) plotted for characteristic
cross-sections f~0 for several values of chP (indicated for
each curve), bold sections of the curves correspond to
single stripes. Mode 1: ks~20.3, cQP~0.1, chH~0.5chP.

Figure 6. The ranges of parameters ks and chP assuring
occurrence of stripes of mode 1 for different anchoring
conditions: dashed line denotes conical degeneration
case; dotted line denotes cQP~0.1; solid line denotes
cQP~0.1chP; chain line denotes the boundary between
planar and homogeneous hybrid alignments in the
absence of stripes; HA~homogeneous hybrid alignment;
UP~uniform planar alignment.
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zero when ks is decreased. The dependences of the

wave numbers on ks for zero and non-zero azimuthal

anchoring conditions are shown in figure 8. A slight

increase of the critical value ksC2 is observed as a

consequence of azimuthal anchoring.

In figure 9, the ranges of occurrence of mode 2 in the

plane (ks, chP) are shown by the plots of cC2, cC1’ and

cC1@ as functions of ks for zero and non-zero azimuthal

anchoring conditions. A slight decrease of cC2 with

azimuthal anchoring is evident. Simultaneously, the

range of existence of the planar orientation is enlarged.

4. Discussion

Periodic deformations in hybrid nematic layers are

fairly complex phenomena. Their features depend

on many parameters—three elastic constant ratios kb,

kt and ks, thickness of the sample and anchoring

conditions characterized by four coefficients. In this

paper, we present the results of numerical calculations

which allow us to establish the influence of azimuthal

anchoring on the structure of splay stripes and on the

conditions for their existence. We focused on a single

typical liquid crystal, 5CB, in which periodic deforma-

tions were observed, and used its material parameters.

Since the value of the surface-like elastic constant k24 is

unknown, values from the whole range determined by

the Ericksen inequalities were taken.

The method of our computations is based on the

iterative minimization of the total free energy of the

layer. During this process, the director orientation is

varied by small intervals which may be interpreted as

introducing a small perturbation. The configuration

corresponding to the lowest energy is accepted after

each iteration. The solutions obtained in this way

are due to the minimum of the free energy and in

consequence are stable against small perturbations.

This applies to all the states distinguished in our

diagrams (figures 6 and 9). For this reason we have

omitted additional stability analysis.

Azimuthal anchoring in a hybrid cell has physical

sense only at the planar plate. The azimuthal anchoring

energy can be zero as well as having a finite value. The

former takes place when the planar background is

isotropic. Standard methods of planar alignment such

as rubbing or SiO evaporation make the substrate

anisotropic, so in consequence the azimuthal anchoring

energy is non-zero. Its typical values are one or two

orders of magnitude smaller than the polar anchoring

energy. Such values were taken into account in the case

of mode 1. In the case of mode 2, such typical values

have a very small influence. Therefore exaggerated

values of azimuthal anchoring energies (i.e. comparable

with the polar anchoring energy) were used to

Figure 7. Dimensionless wave number Q of mode 2 as a
function of chP: solid line denotes the azimuthal
degeneration case; dotted line denotes cQP~1; dashed
line denotes cQP~chP; ks~0.25.

Figure 8. Dimensionless wave number Q of mode 2 as a
function of ks for zero (solid line) and non-zero (cQP~chP;
dotted line) azimuthal anchoring conditions; chP~1 and
chH~0.5.

Figure 9. The ranges of parameters ks and chP assuring
occurrence of stripes of mode 2 for zero (solid line) and
non-zero (cQP~chP; dotted line) azimuthal anchoring
conditions; HA~homogeneous hybrid alignment;
UP~uniform planar alignment.
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demonstrate the character of possible changes of the

stripes. It seems that there is no possibility of the

effective damping of the stripes of mode 2 by imposing

azimuthal anchoring energy of any realistic magnitude.

We found that the influence of azimuthal anchoring

energy on both modes was qualitatively similar, but the

damping of mode 1 was more pronounced. The main

consequences of finite azimuthal anchoring conditions

can be summarized thus:

(i) The amplitudes of angles h and Q decrease with

azimuthal anchoring. In the case of mode 1, the

increase of cQ causes significant decrease of

both angles, but the decrease of Q is more

pronounced. Sufficiently large cQP values elim-

inate the stripes. In the case of mode 2, the most

significant consequence of increasing of cQ is

the decrease of angle Q on the planar plate. Any

decrease of angle h on both plates and of angle Q
on the homeotropic plane is rather insignificant.

(ii) Under non-zero azimuthal anchoring conditions,

the stripes of mode 1 appear with finite wave

number at chP~cC1. The values of cC1 coincide

with the values calculated for mode 1 in earlier

work [11]. At chP~cC2, the wave number rapidly

decreases to zero, which means that above cC2

the sample has homogeneous hybrid structure.

These results are in contrast to the case of

azimuthal degeneration when the wave number

tends to 0 at cC1 and remains finite at cC2.

(iii) Under finite azimuthal anchoring conditions, a

range (ksC1, ksC2) of ks appears in which the

stripes of any mode are excluded. It widens with

the azimuthal anchoring strength.

(iv) The critical values cC1 and cC2 plotted in the (ks,

chP) plane for different azimuthal anchoring

conditions indicate that the regions of existence

of the splay stripes decrease with azimuthal

anchoring.

The disappearance and reappearance of mode 2 seen

in figure 9 is caused by the delicate interplay between

various components of the free energy and can be

interpreted as follows. The region of existence of the

stripes of mode 1 (occurring for for ksv0), plotted in

the (ks, chP) plane, has a characteristic wedge-like shape

which was found also for other periodic deformations

in liquid crystal layers [14, 17, 24, 25]. In particular,

mode 1 stripes disappear if chP is too low and are

replaced by the uniform planar state which exists in a

significant region of the (ks, chP) plane. One might

suppose that a similar wedge-like region should exist

for ksw0 when mode 2 is realized. However, the mode

2 region also spreads over the arbitrarily low chP and

reduces the region of the uniform planar state to the

small area denoted by UP in figure 9. Four components

of the total free energy of the layer should be compared

to explain these effects:

(a) the anchoring energy at the planar plate is

negative and minimum in the UP state and

negative but greater than the minimum value in

the periodically deformed state;

(b) the anchoring energy at the homeotropic plate is

zero in the UP state and negative in the periodic

state;
(c) the term containing the coefficient k24zk22 is

zero in the UP state and negative in periodically

deformed structures;

(d) the elastic term is zero in the UP state and

positive in the periodic state.

The periodic pattern has lower energy than the UP

state if the negative contributions (b) and (c) compen-

sate its elastic energy (d) plus the positive contribution

equal to the difference of the anchoring energies (a) of

the uniform planar and periodic states. When k24v0,

the coefficient k24zk22 has a relatively small magnitude

(between 0 and 0.5 in our case) and the compensation

does not occur. In contrast, when k24w0, the coefficient

is larger (it ranges from 0.5 to 1) and the contributions

(c) together with (b) give rise to the periodic pattern of

mode 2, especially when chP is low, giving only a small

excess above the minimum of the planar anchoring

energy. In consequence, the UP state region becomes

surrounded by the extended mode 2 region.

To our knowledge, the only experimental evidence of

the spontaneous periodic pattern in HAN was obtained

in the absence of azimuthal anchoring [2, 8, 14], so we

are unable to compare our calculated results with

experimental data. Nevertheless, some other aspects of

our results agree qualitatively with the facts reported in

[2, 8, 14]. In particular, the measured period of the

stripes is comparable with the period calculated for

mode 1. It increases with the thickness of the layer

which is also predicted by our work.
As our additional calculations with use of Mueller

matrix method [26, 15] have shown, the damping of the

amplitudes of deformation of mode 1 due to the strong

influence of azimuthal anchoring causes a drastic

decrease of the visibility of the stripes. This fact as

well as significant limitations of the sets of ks and chP

parameters for which the stripes occur, make the

experimental observation of them difficult in real

hybrid aligned nematic layers with no azimuthal

degeneration. If periodic deformations were realized

in such samples, the stripes would probably be poorly

visible.
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